“MYZR-IMX6-EK314 Linux-4.1.15 测试手册 v2.0”的版本间的差异

来自明远智睿的wiki
跳转至: 导航搜索
(创建页面,内容为“ [^_^]: MY-IMX6-EK314 Linux-4.1.15 测试手册 v2.0 <br> ## **第一部分 测试说明** ### 测试环境   【开发板型号】:MY-IMX6-EK314-6...”)
 
第1行: 第1行:
 
    
 
    
 
[^_^]:   
 
[^_^]:   
     MY-IMX6-EK314 Linux-4.1.15 测试手册 v2.0   
+
     MY-IMX6-EK314 Linux-3.14.52 Test manual v2.0   
 
<br>
 
<br>
  
## **第一部分 测试说明**
+
## **Part I :Testing Instructions**
  
### 测试环境
+
### Test Environment
  【开发板型号】:MY-IMX6-EK314-6Q-1G   
+
  【Development board model】:MY-IMX6-EK314-6Q-1G   
  【内核版本】:Linux-4.1.15
+
  【Kernel version】:Linux-4.1.15  
  【文件系统】:L4115-fsl-image-qt5-myimx6a9.tar.bz2
+
  【File system】:L4115-fsl-image-qt5-myimx6a9.tar.bz2  
  【工具版本】:MfgTool-MYIMX6A9-L4.1.15-Patch.svn297.rar
+
  【Tool version】:MfgTool-MYIMX6A9-L4.1.15-Patch.svn297.rar  
  **说明**:为保证测试无误,建议使用的烧录工具版本应不低于svn297  
+
  **Note**:In order to ensure the test is correct, the recommended version of the burning tool should be no less than svn298  
 
<br>
 
<br>
  
### 接口标识图
+
### Interface identification map
[[文件:My-imx6ek314 front.jpg|642px]]
+
[[File:My-imx6ek314 front.jpg|642px]]  
[[文件:My-imx6ek314 back.jpg|642px]]   
+
[[File:My-imx6ek314 back.jpg|642px]]   
 
<br>
 
<br>
  
## **第二部分 接口测试**
+
## **Part II Interface Testing**
  
### 网口一测试
+
### Network port test
  【测试说明】:采用开发板向PC发送ICMP报文的方式进行测试 
+
  【Test instruction】:Test the way that the development board sends ICMP packets to the PC.   
  【接口标识】:10M/100M Ethernet-1   
+
  【Interface identifier】:10M/100M Ethernet-1   
  【系统接口】:eth0  
+
  【System interface】:eth0  
**测试操作**   
+
**Test operation**   
  配置电脑有线网卡IP为 192.168.137.99。    
+
  Configure the computer wired network card IP to 192.168.137.99.    
  把开发板的这个网口用网线跟电脑网口连接起来。  
+
  Connect the network port of the development board with the network cable and the computer network port.  
  配置开发板网口:
+
  Configure the development board network port:
<pre>
+
<pre>
=====> 输入指令:
+
=====>Enter the command:
ifconfig eth1 down
+
ifconfig eth1 down  
ifconfig eth0 192.168.137.81
+
ifconfig eth0 192.168.137.81
</pre>
+
</pre>  
  测试网口:
+
  Test network port: 
<pre>
+
<pre>
=====> 输入指令:
+
=====> Enter the command:  
 
ping 192.168.137.99 -c 2 -w 4  
 
ping 192.168.137.99 -c 2 -w 4  
  
=====> 输出信息:
+
=====> Output information: 
PING 192.168.137.99 (192.168.137.99) 56(84) bytes of data.
+
PING 192.168.137.99 (192.168.137.99) 56(84) bytes of data.
64 bytes from 192.168.137.99: icmp_seq=1 ttl=128 time=0.570 ms
+
64 bytes from 192.168.137.99: icmp_seq=1 ttl=128 time=0.570 ms
64 bytes from 192.168.137.99: icmp_seq=2 ttl=128 time=0.365 ms
+
64 bytes from 192.168.137.99: icmp_seq=2 ttl=128 time=0.365 ms
  
 
--- 192.168.137.99 ping statistics ---
 
--- 192.168.137.99 ping statistics ---
第48行: 第48行:
 
rtt min/avg/max/mdev = 0.365/0.467/0.570/0.104 ms
 
rtt min/avg/max/mdev = 0.365/0.467/0.570/0.104 ms
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  “0% packet loss”表示测试通过。 
+
  “0% packet loss”means the test passed.   
 
<br>
 
<br>
  
### 网口二测试
+
### Network port two test
  【测试说明】:采用开发板向PC发送ICMP报文的方式进行测试 
+
  【Test instruction】:Test the way that the development board sends ICMP packets to the PC.   
  【接口标识】:10M/100M Ethernet-2   
+
  【Interface identifier】:10M/100M Ethernet-2   
  【系统接口】:eth1  
+
  【System interface】:eth1  
**测试操作**   
+
**Test operation**   
  配置电脑有线网卡IP为 192.168.137.99。    
+
  Configure the computer wired network card IP to 192.168.137.99.   
  把开发板的这个网口用网线跟电脑网口连接起来。  
+
  Connect the network port of the development board with the network cable and the computer network port.    
  配置开发板网口:
+
  Configure the development board network port:  
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
ifconfig eth0 down
 
ifconfig eth0 down
 
ifconfig eth1 192.168.137.82  
 
ifconfig eth1 192.168.137.82  
 
</pre>
 
</pre>
  测试网口:
+
  Test network port: 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
ping 192.168.137.99 -c 2 -w 4  
 
ping 192.168.137.99 -c 2 -w 4  
  
=====> 输出信息:
+
=====> Output information:
 
PING 192.168.137.99 (192.168.137.99) 56(84) bytes of data.
 
PING 192.168.137.99 (192.168.137.99) 56(84) bytes of data.
 
64 bytes from 192.168.137.99: icmp_seq=1 ttl=128 time=1.38 ms
 
64 bytes from 192.168.137.99: icmp_seq=1 ttl=128 time=1.38 ms
第79行: 第79行:
 
rtt min/avg/max/mdev = 0.627/1.003/1.380/0.377 ms
 
rtt min/avg/max/mdev = 0.627/1.003/1.380/0.377 ms
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  “0% packet loss”表示测试通过。 
+
  “0% packet loss”means the test passed.   
 
<br>
 
<br>
  
### USB接口测试
+
### USB interface test
  【测试说明】:采用插拔USB存储设备(U盘)的方式进行测试 
+
  【Test instruction】:Test by plugging and unplugging a USB storage device (U disk)   
  【接口标识】:USB HOST   
+
  【Interface identifier】:USB HOST   
  【系统接口】:/sys/bus/usb/   
+
  【System interface】:/sys/bus/usb/   
**测试方法**   
+
**Test Methods**   
  将USB设备插入底板USB接口,系统会输出类似如下信息:
+
  Insert the USB device into the backplane USB interface and the system will output a message similar to the following:
 
<pre>
 
<pre>
 
usb 1-1.2: new high-speed USB device number 5 using ci_hdrc
 
usb 1-1.2: new high-speed USB device number 5 using ci_hdrc
第102行: 第102行:
 
sd 1:0:0:0: [sda] Attached SCSI removable disk
 
sd 1:0:0:0: [sda] Attached SCSI removable disk
 
</pre>
 
</pre>
  将USB设备从底板拔出,系统会输出类似如下信息:
+
  Pull the USB device out of the backplane and the system will output a message similar to the following: 
 
<pre>
 
<pre>
 
usb 1-1.2: USB disconnect, device number 5
 
usb 1-1.2: USB disconnect, device number 5
 
</pre>     
 
</pre>     
**测试结果**   
+
**Test Results**   
  USB存储设备插拔时系统输出如上类似信息即表示正常。 
+
  When the USB storage device is plugged and unplugged, the system outputs the above information to indicate normal.   
 
<br>
 
<br>
  
### SD接口测试
+
### SD interface test
  【测试说明】:采用插入并识别TF卡的方式进行测试 
+
  【Test instruction】:Test by inserting and identifying a TF card   
  【接口标识】:SD3  
+
  【Interface identifier】:SD3  
  【系统接口】:/sys/bus/mmc/   
+
  【System interface】:/sys/bus/mmc/   
**测试方法**   
+
**Test Methods**   
  把SD卡插入到这个接口:  
+
  Insert the SD card into this interface:  
 
<pre>
 
<pre>
=====> 输出信息:
+
=====> Output information:
 
mmc2: new high speed SDHC card at address 1234
 
mmc2: new high speed SDHC card at address 1234
 
mmcblk2: mmc2:1234 SA32G 28.9 GiB  
 
mmcblk2: mmc2:1234 SA32G 28.9 GiB  
 
  mmcblk2: p1
 
  mmcblk2: p1
 
</pre>
 
</pre>
  弹出SD卡:  
+
  Pop up the SD card:  
 
<pre>
 
<pre>
=====> 输出信息:
+
=====> Output information: 
mmc2: card 1234 removed
+
mmc2: card 1234 removed
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  SD存储设备插拔时系统输出如上类似信息即表示正常。 
+
  When the SD storage device is plugged and unplugged, the system outputs the above information to indicate normal.   
 
<br>
 
<br>
 
    
 
    
### 标准GPIO测试 
+
### Standard GPIO test   
  【测试说明】:控制GPIO的输出电平 
+
  【Test instruction】:Control the output level of the GPIO   
  【接口标识】:GPIO  
+
  【Interface identifier】:GPIO  
  【系统接口】:/sys/class/gpio/   
+
  【System interface】:/sys/class/gpio/   
**MY-IMX6-EK314可用的IO**   
+
**IO available for MY-IMX6-EK314**   
 
<pre>
 
<pre>
 
U14:3(193), U14:5(177), U14:7(176), U14:9(35), U14:11(169), U14:13(34), U14:15(36), U14:17(29)
 
U14:3(193), U14:5(177), U14:7(176), U14:9(35), U14:11(169), U14:13(34), U14:15(36), U14:17(29)
第141行: 第141行:
 
U14:19(30), U14:21(24), U14:23(10), U14:25(12), U14:27(11), U14:29(85), U14:35(20), U14:37(116)
 
U14:19(30), U14:21(24), U14:23(10), U14:25(12), U14:27(11), U14:29(85), U14:35(20), U14:37(116)
 
U14:20(26), U14:22(GND), U14:24(15), U14:26(13), U14:28(14), U14:30(86), U14:36(NC), U14:38(NC)
 
U14:20(26), U14:22(GND), U14:24(15), U14:26(13), U14:28(14), U14:30(86), U14:36(NC), U14:38(NC)
</pre>
+
</pre>  
**GPIO输出低电平测试**
+
**GPIO output low level test**  
  配置U14:29为输出低电平的操作方法: 
+
  Configure U14:29 to output low level operation method:   
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
OUT_IO_OUT_NUM=85
 
OUT_IO_OUT_NUM=85
 
echo ${OUT_IO_OUT_NUM} > /sys/class/gpio/export     
 
echo ${OUT_IO_OUT_NUM} > /sys/class/gpio/export     
第151行: 第151行:
 
echo 0 > /sys/class/gpio/gpio${OUT_IO_OUT_NUM}/value  
 
echo 0 > /sys/class/gpio/gpio${OUT_IO_OUT_NUM}/value  
 
</pre>   
 
</pre>   
  用万用表测试管脚J4:8,电压为0V,则表示OK    
+
  Test the pin U14:29 with a multimeter, the voltage is 0V, it means OK    
**GPIO输出高电平测试**
+
**GPIO output high level test**  
  配置U14:30为输出高电平的操作方法:    
+
  Configure U14:30 to output high level operation method:     
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
OUT_IO_OUT_NUM=86  
 
OUT_IO_OUT_NUM=86  
 
echo ${OUT_IO_OUT_NUM} > /sys/class/gpio/export
 
echo ${OUT_IO_OUT_NUM} > /sys/class/gpio/export
第161行: 第161行:
 
echo 1 > /sys/class/gpio/gpio${OUT_IO_OUT_NUM}/value
 
echo 1 > /sys/class/gpio/gpio${OUT_IO_OUT_NUM}/value
 
</pre>   
 
</pre>   
  用万用表测试管脚U14:30,电压为3.3V,则表示OK 
+
  Test the pin U14:30 with a multimeter, the voltage is 3.3V, it means OK 
**其它**   
+
**Other**   
  控制 GPIO 输出低电平的指令:
+
  Instructions to control GPIO output low level: 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
echo 0 > /sys/class/gpio/gpio${OUT_IO_OUT_NUM}/value   
 
echo 0 > /sys/class/gpio/gpio${OUT_IO_OUT_NUM}/value   
 
</pre>   
 
</pre>   
  控制 GPIO 输出高电平的指令:
+
  Instructions to control GPIO output high level: 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
echo 1 > /sys/class/gpio/gpio${OUT_IO_OUT_NUM}/value  
 
echo 1 > /sys/class/gpio/gpio${OUT_IO_OUT_NUM}/value  
 
</pre>
 
</pre>
 
<br>
 
<br>
  
### GPIO-LED测试(leds-heartbeat)
+
### GPIO-LED Test(leds-heartbeat)
  【测试说明】:观察 leds-heartbeat 的 LED 
+
  【Test instruction】:Observe the leds of leds-heartbeat  
  【接口标识】:GPIO-LED   
+
  【Interface identifier】:GPIO-LED   
  【系统接口】:/sys/class/leds/leds-heartbeat/   
+
  【System interface】:/sys/class/leds/leds-heartbeat/   
**测试操作**   
+
**Test operation**   
  无需任何操作  
+
  No need for any operation.  
**测试结果**   
+
**Test Results**   
  系统启动后可以看到 D15 在有规律的闪烁,即表示应该功能正常。 
+
  After the system is started, you can see that D15 is flashing regularly, which means it should function normally.   
 
<br>
 
<br>
  
### GPIO-LED测试(leds-mmc3)
+
### GPIO-LED Test(leds-mmc3)
  【测试说明】:往 eMMC 写数据,同时观察 leds-mmc3 的 LED 
+
  【Test instruction】:Write data to eMMC while observing LEDs of leds-mmc3  
  【接口标识】:GPIO-LED   
+
  【Interface identifier】:GPIO-LED   
  【系统接口】:/sys/class/leds/leds-mmc3/   
+
  【System interface】:/sys/class/leds/leds-mmc3/   
**测试操作**   
+
**Test operation**   
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
dd if=/dev/zero of=/home/root/test bs=1024k count=128
 
dd if=/dev/zero of=/home/root/test bs=1024k count=128
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  可以看到往eMMC写数据时,D16亮了。  
+
  You can see that when you write data to eMMC, D16 is bright.  
 
<br>
 
<br>
  
### GPIO-LED测试(leds-timer)
+
### GPIO-LED Test(leds-timer)
  【测试说明】:观察 leds-timer 的 LED  
+
  【Test instruction】:Observe led-time LEDs  
  【测试说明】:控制 leds-timer(LED)的亮灭时间 
+
  【Test instruction】:Control the lighting time of led-time(LED) 
  【接口标识】:GPIO-LED   
+
  【Interface identifier】:GPIO-LED   
  【系统接口】:/sys/class/leds/leds-timer/   
+
  【System interface】:/sys/class/leds/leds-timer/   
**测试操作**   
+
**Test operation**   
  更改 led-timer (D17) 灭的时间  
+
  Change the time of led-time(D17) extinction  
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
echo 1000 > /sys/class/leds/leds-timer/delay_off   
 
echo 1000 > /sys/class/leds/leds-timer/delay_off   
 
</pre>
 
</pre>
  更改 led-timer (D17) 亮的时间  
+
  Change the time that led-timer (D17) is on  
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
echo 2000 > /sys/class/leds/leds-timer/delay_on   
 
echo 2000 > /sys/class/leds/leds-timer/delay_on   
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  执行指令后,观察发现对应LED的亮灭的时间比例基本是2:1。  
+
  After executing the instruction, it is observed that the proportion of time for the corresponding LED to be on and off is basically 2:1.  
 
<br>
 
<br>
  
### GPIO-LED测试(leds-gpio)
+
### GPIO-LED Test(leds-gpio)
  【测试说明】:控制 ledss-gpio(LED)的亮灭时间 
+
  【Test instruction】:Control the on and off time of ledss-gpio (LED)   
  【接口标识】:LED  
+
  【Interface identifier】:LED  
  【系统接口】:/sys/class/leds/leds-gpio/   
+
  【System interface】:/sys/class/leds/leds-gpio/   
**测试操作**   
+
**Test operation**   
  使 D18 灭: 
+
  Make the light (D18) off: 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
echo 0 > /sys/class/leds/leds-gpio/brightness   
 
echo 0 > /sys/class/leds/leds-gpio/brightness   
 
</pre>
 
</pre>
  使 D18 亮: 
+
  Turn the light(D18) on:
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
echo 1 > /sys/class/leds/leds-gpio/brightness   
 
echo 1 > /sys/class/leds/leds-gpio/brightness   
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  执行指令后,发现对应LED的状态随指令的功能进行改变。 
+
  After executing the instruction, it is found that the state of the corresponding LED changes with the function of the instruction. 
 
<br>
 
<br>
  
### GPIO-KEY测试
+
### GPIO-KEY test 
  【测试说明】:使用 evtest 进行测试 
+
  【Test instruction】:Use evtest for testing 
  【接口标识】:KEY3, KEY2, KEY1   
+
  【Interface identifier】:KEY3, KEY2, KEY1   
  【系统接口】:/dev/input/eventX   
+
  【System interface】:/dev/input/eventX   
**测试操作**   
+
**Test operation**   
  运行 evtest 准备测试
+
  Run evtest to prepare for testing 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
evtest  
 
evtest  
  
=====> 输出信息:
+
=====> Output information: 
 
No device specified, trying to scan all of /dev/input/event*
 
No device specified, trying to scan all of /dev/input/event*
 
Available devices:
 
Available devices:
第254行: 第254行:
 
Select the device event number [0-1]:
 
Select the device event number [0-1]:
 
</pre>
 
</pre>
  选择 gpio-keys 所对应的序号
+
  Select the serial number corresponding to gpio-keys
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
1
 
1
  
=====> 输出信息:
+
=====>Output information: 
 
Input driver version is 1.0.1
 
Input driver version is 1.0.1
 
Input device ID: bus 0x19 vendor 0x1 product 0x1 version 0x100
 
Input device ID: bus 0x19 vendor 0x1 product 0x1 version 0x100
第272行: 第272行:
 
Testing ... (interrupt to exit)
 
Testing ... (interrupt to exit)
 
</pre>
 
</pre>
  按动开发板上的按键
+
  Press the button on the development board 
 
<pre>
 
<pre>
 
Event: time 1537921332.815219, type 1 (EV_KEY), code 114 (KEY_VOLUMEDOWN), value 1
 
Event: time 1537921332.815219, type 1 (EV_KEY), code 114 (KEY_VOLUMEDOWN), value 1
第287行: 第287行:
 
Event: time 1537921337.535204, -------------- SYN_REPORT ------------
 
Event: time 1537921337.535204, -------------- SYN_REPORT ------------
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  当发生按键时,evtest 会输出相应的信息。  
+
  When a button is pressed, evtest will output the corresponding information.  
 
<br>
 
<br>
  
### 串口测试(UART2)  
+
### Serial test(UART2)  
  【测试说明】:采用串口自发自收的方式进行测试 
+
  【Test instruction】:Test by serial port self-receiving   
  【接口标识】:TTL_UART  
+
  【Interface identifier】:TTL_UART  
  【系统设备】:/dev/ttymxc1   
+
  【System equipment】:/dev/ttymxc1   
**测试操作**   
+
**Test operation**   
  短接串口2的发送发接收管脚(J12的9和10号管脚)  
+
  Short the serial port 2 transmit and receive pin (J12 pins 9 and 10)  
  执行测试指令:
+
  Execute test instructions: 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
/my-demo/gcc-linaro-5.3-arm/serial_test.out /dev/ttymxc1 "www.myzr.com.cn"   
 
/my-demo/gcc-linaro-5.3-arm/serial_test.out /dev/ttymxc1 "www.myzr.com.cn"   
  
=====> 输出信息:
+
=====> Output information: 
 
Starting send data...finish
 
Starting send data...finish
 
Starting receive data:
 
Starting receive data:
第322行: 第322行:
 
ASCII: 0x0      Character:   
 
ASCII: 0x0      Character:   
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  执行测试指令后,应用输出如上类似信息即正常。 
+
  After executing the test command, the application output is similar to the above information.   
 
<br>
 
<br>
  
### 串口测试(UART3)  
+
### Serial test(UART3)  
  【测试说明】:采用串口自发自收的方式进行测试 
+
  【Test instruction】:Test by serial port self-receiving   
  【接口标识】:TTL_UART  
+
  【Interface identifier】:TTL_UART  
  【系统设备】:/dev/ttymxc2   
+
  【System equipment】:/dev/ttymxc2   
**测试操作**   
+
**Test operation**   
  短接串口3的发送发接收管脚(J12的12和13号管脚)    
+
  Short-circuit the transmit and receive pins of serial port 3 (pins 12 and 13 of J12).   
  执行测试指令:
+
  Execute test instructions:    
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
/my-demo/gcc-linaro-5.3-arm/serial_test.out /dev/ttymxc2 "www.myzr.com.cn"   
 
/my-demo/gcc-linaro-5.3-arm/serial_test.out /dev/ttymxc2 "www.myzr.com.cn"   
  
=====> 输出信息:
+
=====> Output information: 
 
Starting send data...finish
 
Starting send data...finish
 
Starting receive data:
 
Starting receive data:
第357行: 第357行:
 
ASCII: 0x0      Character:   
 
ASCII: 0x0      Character:   
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  执行测试指令后,应用输出如上类似信息即正常。 
+
  After executing the test instruction, the application output similar information as above is normal.   
 
<br>
 
<br>
  
### 串口测试(UART4)  
+
### Serial test(UART4)  
  【测试说明】:采用串口自发自收的方式进行测试 
+
  【Test instruction】:Test by serial port self-receiving   
  【接口标识】:TTL_UART  
+
  【Interface identifier】:TTL_UART  
  【系统设备】:/dev/ttymxc3   
+
  【System equipment】:/dev/ttymxc3   
**测试操作**   
+
**Test operation**   
  短接串口4的发送发接收管脚(J12的15和17号管脚)    
+
  Short-circuit the transmit and receive pins of serial port 4 (pins 15 and 17 of J12)    
  执行测试指令:
+
    Execute test instructions: 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
/my-demo/gcc-linaro-5.3-arm/serial_test.out /dev/ttymxc3 "www.myzr.com.cn"   
 
/my-demo/gcc-linaro-5.3-arm/serial_test.out /dev/ttymxc3 "www.myzr.com.cn"   
  
=====> 输出信息:
+
=====> Output information: 
 
Starting send data...finish
 
Starting send data...finish
 
Starting receive data:
 
Starting receive data:
第392行: 第392行:
 
ASCII: 0x0      Character:   
 
ASCII: 0x0      Character:   
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  执行测试指令后,应用输出如上类似信息即正常。 
+
  After executing the test instruction, the application output similar information as above is normal.   
 
<br>
 
<br>
  
### 串口测试(UART5)  
+
### Serial test(UART5)  
  【测试说明】:采用串口自发自收的方式进行测试 
+
  【Test instruction】:The serial port self - collecting method was used to test   
  【接口标识】:TTL_UART  
+
  【Interface identifier】:TTL_UART  
  【系统设备】:/dev/ttymxc4   
+
  【System equipment】:/dev/ttymxc4   
**测试操作**   
+
**Test operation**   
  短接串口5的发送发接收管脚(J12的16和18号管脚) 
+
  Short-circuit the transmit and receive pins of serial port 5 (pins 16 and 18 of J12) 
  执行测试指令:
+
  Execute test instructions: 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
/my-demo/gcc-linaro-5.3-arm/serial_test.out /dev/ttymxc4 "www.myzr.com.cn"   
 
/my-demo/gcc-linaro-5.3-arm/serial_test.out /dev/ttymxc4 "www.myzr.com.cn"   
  
=====> 输出信息:
+
=====> Output information: 
 
Starting send data...finish
 
Starting send data...finish
 
Starting receive data:
 
Starting receive data:
第427行: 第427行:
 
ASCII: 0x0      Character:   
 
ASCII: 0x0      Character:   
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  执行测试指令后,应用输出如上类似信息即正常。 
+
  After executing the test instruction, the application output similar information as above is normal.   
 
<br>
 
<br>
  
### CAN 测试
+
### CAN test 
  【测试说明】:采用CAN1发送,CAN0接收的方式。 
+
  【Test instruction】:CAN1 sending and CAN0 receiving are adopted. 
  【接口标识】:CAN1,CAN2 
+
  【Interface identifier】:CAN1,CAN2   
  【系统接口】:can0,can1 
+
  【System interface】:can0,can1   
**测试准备**   
+
**Test preparation**   
  将CAN1的CAN_L与CAN2的CAN_L连接。 
+
  Connect CAN_L of CAN1 to CAN_L of CAN2. 
  将CAN1的CAN_H与CAN2的CAN_H连接。 
+
  Connect CAN_H of CAN1 to CAN_H of CAN2.   
**测试命令**   
+
**Test command**   
  配置 CAN1(can0):   
+
  Configure CAN1(can0):   
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
ip link set can0 up type can bitrate 125000
 
ip link set can0 up type can bitrate 125000
 
</pre>
 
</pre>
  配置 CAN2(can1):   
+
  Configure CAN2(can1):   
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
ip link set can1 up type can bitrate 125000
 
ip link set can1 up type can bitrate 125000
 
</pre>
 
</pre>
  CAN1 (can0) 后台接收: 
+
  CAN1 (can0) background reception :   
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
candump can0 &   
 
candump can0 &   
 
</pre>
 
</pre>
  CAN2(can1)发送数据: 
+
  CAN2(can1)send data: 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
cansend can1 1F334455#1122334455667788  
 
cansend can1 1F334455#1122334455667788  
  
=====> 输出信息:
+
=====> Output information: 
 
can0  1F334455  [8]  11 22 33 44 55 66 77 88
 
can0  1F334455  [8]  11 22 33 44 55 66 77 88
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  CAN2(can1)发送数据后,CAN1(can0)会把接收到的数据输出,如:11 22 33 44 55 66 77 88     
+
  After CAN2 (can1) transmits data, CAN1 (can0) will output the received data, such as: 11 22 33 44 55 66 77 88     
 
<br>
 
<br>
  
### SPI测试(ECSPI1)
+
### SPI test(ECSPI1)
  【测试说明】:采用自发自收的方式测试。 
+
  【Test instruction】:Tested by spontaneous self-receiving.   
  【接口标识】:SPI  
+
  【Interface identifier】:SPI  
  【系统设备】:/dev/spidev0.1   
+
  【System equipment】:/dev/spidev0.1   
**测试操作**   
+
**Test operation**   
  短接J7的6和12管脚。    
+
  Short the 6 and 12 pins of J7.    
  执行测试指令  
+
  Execute test instruction  
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
/my-demo/gcc-linaro-5.3-arm/spidev_test.out -D /dev/spidev0.1   
 
/my-demo/gcc-linaro-5.3-arm/spidev_test.out -D /dev/spidev0.1   
  
=====> 输出信息:
+
=====> Output information:
 
spi mode: 0
 
spi mode: 0
 
bits per word: 8
 
bits per word: 8
第490行: 第490行:
 
F0 0D  
 
F0 0D  
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  执行测试指令后,应用输出如上类似信息即正常。 
+
  After executing the test instruction, the application output similar information as above is normal.   
 
<br>
 
<br>
  
### SPI测试(ECSPI2)
+
### SPI test(ECSPI2)
  【测试说明】:采用自发自收的方式测试。  
+
  【Test instruction】:Tested by spontaneous self-receiving.  
  【接口标识】:SPI  
+
  【Interface identifier】:SPI  
  【系统设备】:/dev/spidev1.0   
+
  【System equipment】:/dev/spidev1.0   
**测试操作**   
+
**Test operation**   
  短接J13的7和11管脚。 
+
  Short the 7 and 11 pins of the J13.
  执行测试指令
+
  Execute test instructions 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
/my-demo/gcc-linaro-5.3-arm/spidev_test.out -D /dev/spidev1.0   
 
/my-demo/gcc-linaro-5.3-arm/spidev_test.out -D /dev/spidev1.0   
  
=====> 输出信息:
+
=====> Output information: 
 
spi mode: 0
 
spi mode: 0
 
bits per word: 8
 
bits per word: 8
第518行: 第518行:
 
F0 0D
 
F0 0D
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  执行测试指令后,应用输出如上类似信息即正常。 
+
  After Execute test instructions, the application output is similar to the above information. 
 
<br>
 
<br>
 
    
 
    
### Watchdog 超时复位测试
+
### Watchdog Timeout reset test 
  【测试说明】:开启看门狗,并等待看门狗超时,产生复位。 
+
  【Test instruction】:Turn on the watchdog and wait for the watchdog to time out, generating a reset. 
  【接口标识】:无  
+
  【Interface identifier】:None  
  【系统设备】:/dev/watchdog   
+
  【System equipment】:/dev/watchdog   
**测试操作**   
+
**Test operation**   
  运行看门狗程序: 
+
  Run the watchdog program:
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:  
 
/unit_tests/wdt_driver_test.out 10 15 1   
 
/unit_tests/wdt_driver_test.out 10 15 1   
 
    
 
    
=====> 输出信息:
+
=====> Output information:
 
Starting wdt_driver (timeout: 10, sleep: 15, test: write)
 
Starting wdt_driver (timeout: 10, sleep: 15, test: write)
 
Trying to set timeout value=10 seconds
 
Trying to set timeout value=10 seconds
第538行: 第538行:
 
Now reading back -- The timeout is 10 seconds
 
Now reading back -- The timeout is 10 seconds
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  运行测试命令10秒后,WatchDog超时,系统被复位。会在终端看到系统重新启动输出的信息类似如下:
+
  After running the test command for 10 seconds, WatchDog times out and the system is reset. The information that will see the system restart output at the terminal is similar to the following: 
 
<pre>
 
<pre>
 
U-Boot 2016.03-svn351 (Jan 25 2019 - 10:13:51 +0800)
 
U-Boot 2016.03-svn351 (Jan 25 2019 - 10:13:51 +0800)
第551行: 第551行:
 
<br>
 
<br>
  
### Watchdog 喂狗测试
+
### Watchdog Feeding dog test 
  【测试说明】:开启看门狗,并使应用程序喂狗。 
+
  【Test instruction】:Turn on the watchdog and feed the app to the dog. 
  【接口标识】:无  
+
  【Interface identifier】:None  
  【系统设备】:/dev/watchdog   
+
  【System equipment】:/dev/watchdog   
**测试操作**   
+
**Test operation**   
  运行看门狗程序,并设置超时时间为4秒,喂狗间隔时间为2秒: 
+
  Run the watchdog program and set the timeout to 4 seconds and the dog interval to 2 seconds:
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
/unit_tests/wdt_driver_test.out 4 2 1 &   
 
/unit_tests/wdt_driver_test.out 4 2 1 &   
 
    
 
    
=====> 输出信息:
+
=====> Output information:
 
[1] 1026
 
[1] 1026
 
Starting wdt_driver (timeout: 4, sleep: 2, test: write)
 
Starting wdt_driver (timeout: 4, sleep: 2, test: write)
第570行: 第570行:
 
<br>
 
<br>
  
### RTC 测试  
+
### RTC test  
  【测试说明】:读取并设置时间,断电重启后检查时间是否正确 
+
  【Test instruction】:Read and set the time, check the time is correct after power off and restart 
  【接口标识】:无  
+
  【Interface identifier】:None  
  【系统设备】:/sys/class/rtc/rtc0/   
+
  【System equipment】:/sys/class/rtc/rtc0/   
**测试操作**   
+
**Test operation**   
  1. 断电重启设备,查看当前系统时间和硬件时间:
+
  1.Power off and restart the device to check the current system time and hardware time: 
 
<pre>
 
<pre>
=====> 输入指令:  
+
=====> Enter the command:
 
date
 
date
  
=====> 输出信息:
+
=====> Output information:
 
Tue Sep 25 22:47:03 UTC 2018
 
Tue Sep 25 22:47:03 UTC 2018
 
</pre>
 
</pre>
  2. 查看当前RTC芯片时钟:  
+
  2.  View the current RTC chip clock:   
 
<pre>
 
<pre>
=====> 输入指令:  
+
=====> Enter the command:  
 
hwclock  
 
hwclock  
  
=====> 输出信息:
+
=====> Output information: 
 
Tue Sep 25 22:47:18 2018  0.000000 seconds
 
Tue Sep 25 22:47:18 2018  0.000000 seconds
 
</pre>
 
</pre>
  3. 设置系统时钟,并同步到RTC芯片 
+
  3. Set the system clock and sync to the RTC chip   
 
<pre>
 
<pre>
=====> 输入指令:  
+
=====> Enter the command:  
 
date -s "2019-01-14 12:34:56"   
 
date -s "2019-01-14 12:34:56"   
  
=====> 输出信息:
+
=====> Output information:
 
Mon Jan 14 12:34:56 UTC 2019
 
Mon Jan 14 12:34:56 UTC 2019
 
</pre>
 
</pre>
  4. 将系统时钟写入硬件时钟 
+
  4. Write the system clock to the hardware clock 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
hwclock -w   
 
hwclock -w   
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  1. 断电重启评估板,查看当前系统时钟和硬件时钟   
+
  1. Power off the evaluation board to view the current system clock and hardware clock       
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
date
 
date
  
=====> 输出信息:
+
=====> Output information:
 
Mon Jan 14 12:36:22 UTC 2019
 
Mon Jan 14 12:36:22 UTC 2019
 
</pre>
 
</pre>
 
    
 
    
  2. 查看当前RTC芯片时钟
+
  2. View the current RTC chip clock 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
hwclock   
 
hwclock   
  
=====> 输出信息:
+
=====> Output information: 
 
Mon Jan 14 12:36:40 2019  0.000000 seconds
 
Mon Jan 14 12:36:40 2019  0.000000 seconds
 
</pre>
 
</pre>
  可以看到我们得到的时间与设置的时间基本相同。 
+
  It can be seen that the time we get is basically the same as the time set.   
 
<br>
 
<br>
  
### WakeAlarm 唤醒测试
+
### WakeAlarm Wake up test 
  【测试说明】:设定 wakealarm 事件,之后使系统进入睡眠,等待 wakealarm 事件唤醒。  
+
  【Test instruction】:Set the wakealarm event, then put the system to sleep and wait for the wakealarm event to wake up.  
  【接口标识】:无 
+
  【Interface identifier】:None 
  【系统设备】:如 /sys/class/rtc/rtc1/wakealarm
+
  【System equipment】:Such as /sys/class/rtc/rtc1/wakealarm  
**测试操作**
+
**Test operation**  
  1. 设定 rtc1,使 10 秒后产生 wakealarm 事件
+
  1. Set rtc1 to generate a wakealarm event after 10 seconds 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
echo +10 > /sys/class/rtc/rtc1/wakealarm  
 
echo +10 > /sys/class/rtc/rtc1/wakealarm  
 
</pre>
 
</pre>
  
  2. 使设备进入睡眠
+
  2.Put the device to sleep 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
echo mem > /sys/power/state
 
echo mem > /sys/power/state
  
=====> 输出信息:
+
=====> Output information: 
 
PM: Syncing filesystems ... done.
 
PM: Syncing filesystems ... done.
Freezing user space processes ... (elapsed 0.001 seconds) done.
+
Freezing user space processes ... (elapsed 0.001 seconds) done.
Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
+
Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
Suspending console(s) (use no_console_suspend to debug)
+
Suspending console(s) (use no_console_suspend to debug)
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  1. 可以看到开发板的除电源指示灯以外的 LED 都灭了。  
+
  1. You can see that the LEDs of the development board except the power indicator are off.  
  2. 10内 LED 的状态又恢复了,并且系统输出类似如下信息:
+
  2. The state of the LED is restored again within 10 seconds, and the system outputs something like the following: 
 
<pre>
 
<pre>
 
PM: suspend of devices complete after 90.667 msecs
 
PM: suspend of devices complete after 90.667 msecs
第671行: 第671行:
 
<br>
 
<br>
  
### 音频播放测试
+
### Audio playback test   
  【测试说明】:通过播放音频文件验证评估板的音频播放功能。 
+
  【Test instruction】:Verify the audio playback of the EV kit by playing an audio file.     
  【接口标识】:EAR  
+
  【Interface identifier】:EAR  
  【系统设备】:wm8960-audio   
+
  【System equipment】:wm8960-audio   
**测试操作**   
+
**Test operation**   
  把耳机插入开发板的“EAR”口。  
+
  Plug the headset into the "EAR" port of the board.  
  执行测试命令:
+
  Execute the test command: 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:  
 
aplay /unit_tests/audio8k16S.wav   
 
aplay /unit_tests/audio8k16S.wav   
  
=====> 输出信息:
+
=====> Output information: 
 
Playing WAVE '/unit_tests/audio8k16S.wav' : Signed 16 bit Little Endian, Rate 8000 Hz, Stereo
 
Playing WAVE '/unit_tests/audio8k16S.wav' : Signed 16 bit Little Endian, Rate 8000 Hz, Stereo
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  执行上面的测试命令后会听到音频设备输出的声音。 
+
  After the above test command is executed, the sound output from the audio device will be heard.   
 
<br>
 
<br>
  
### 音频录音测试
+
### Audio recording test 
  【测试说明】:通过录音并播放录音文件验证评估板的音频录音功能。 
+
  【Test instruction】:Verify the audio recording function of the EV kit by recording and playing the recording file.   
  【接口标识】:MIC  
+
  【Interface identifier】:MIC  
  【系统设备】:wm8960-audio   
+
  【System equipment】:wm8960-audio   
**测试操作**   
+
**Test operation**   
  1. 把带MIC的耳机插入开发板的“MIC”口。 
+
  1. Plug the headset with the MIC into the “MIC” port of the development board.   
  2. 执行录音命令:
+
  2. Execute the recording command: 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
arecord -d 5 -f S16_LE -t wav foobar.wav
 
arecord -d 5 -f S16_LE -t wav foobar.wav
  
=====> 输出信息:
+
=====> Output information: 
 
Recording WAVE 'foobar.wav' : Signed 16 bit Little Endian, Rate 8000 Hz, Mono
 
Recording WAVE 'foobar.wav' : Signed 16 bit Little Endian, Rate 8000 Hz, Mono
 
</pre>
 
</pre>
  3. 播放录音
+
  3. Play recording 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
aplay foobar.wav
 
aplay foobar.wav
  
=====> 输出信息:
+
=====> Output information:
 
Playing WAVE 'foobar.wav' : Signed 16 bit Little Endian, Rate 8000 Hz, Mono
 
Playing WAVE 'foobar.wav' : Signed 16 bit Little Endian, Rate 8000 Hz, Mono
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  执行上面的测试命令后会听到播放的录音。 
+
  The recorded recording will be heard after executing the above test command.   
 
<br>
 
<br>
  
## 第三部分 显示功能测试
+
## Part III Display function test 
### 操作说明
+
### Operating instructions
  **每项显示功能测试都需要重启系统进入到u-boot命令行,并在u-boot命令行下执行指令。**   
+
  **Each display function test needs to restart the system to enter the u-boot command line and execute the command under the u-boot command line.**   
### 单屏显示
+
### Single screen display 
* LVDS1 显示  
+
* LVDS1 display  
说明:默认为 LVDS1 显示,即上电后不干预启动的情况下,LVDS1 为显示设备。 
+
Note: The default is LVDS1 display, that is, LVDS1 is the display device when it is not intervened after power-on.
显式配置 LVDS1 为显示的方法:
+
Explicitly configure LVDS1 as the display method: 
 
<pre>
 
<pre>
 
run load_scr; source; setenv display $disp_fb0_lvds1; saveenv; boot
 
run load_scr; source; setenv display $disp_fb0_lvds1; saveenv; boot
 
</pre>
 
</pre>
* LVDS0 显示
+
* LVDS0 display
 
<pre>
 
<pre>
 
run load_scr; source; setenv display $disp_fb0_lvds0; saveenv; boot
 
run load_scr; source; setenv display $disp_fb0_lvds0; saveenv; boot
 
</pre>
 
</pre>
* HDMI 显示
+
* HDMI display
 
<pre>
 
<pre>
 
run load_scr; source; setenv display $disp_fb0_hdmi; saveenv; boot
 
run load_scr; source; setenv display $disp_fb0_hdmi; saveenv; boot
 
</pre>
 
</pre>
* LCD(RGB) 显示
+
* LCD(RGB) display
 
<pre>
 
<pre>
 
run load_scr; source; setenv display $disp_fb0_lcd; saveenv; boot
 
run load_scr; source; setenv display $disp_fb0_lcd; saveenv; boot
 
</pre>
 
</pre>
### 双LVDS屏显示
+
### Dual LVDS screen display 
* LVDS1 + LVDS0 双屏同步显示
+
* LVDS1 + LVDS0 Dual screen sync display 
 
<pre>
 
<pre>
 
run load_scr; source; setenv display $disp_lvds_dul; saveenv; boot
 
run load_scr; source; setenv display $disp_lvds_dul; saveenv; boot
 
</pre>
 
</pre>
* LVDS1 + LVDS0(fb4) 双屏异步显示
+
* LVDS1 + LVDS0(fb4) Dual screen asynchronous display
 
<pre>
 
<pre>
 
run load_scr; source; setenv display $disp_lvds_sep; saveenv; boot
 
run load_scr; source; setenv display $disp_lvds_sep; saveenv; boot
 
</pre>
 
</pre>
### 双屏异步显示
+
### Dual screen asynchronous display
* LVDS1 + HDMI 双屏异步显示
+
* LVDS1 + HDMI Dual screen asynchronous display
 
<pre>
 
<pre>
 
run load_scr; source; setenv display $disp_fb0_lvds1 $disp_fb1_hdmi; saveenv; boot
 
run load_scr; source; setenv display $disp_fb0_lvds1 $disp_fb1_hdmi; saveenv; boot
 
</pre>
 
</pre>
* LVDS1 + LCD(RGB) 双屏异步显示
+
* LVDS1 + LCD(RGB) Dual screen asynchronous display
 
<pre>
 
<pre>
 
run load_scr; source; setenv display $disp_fb0_lvds1 $disp_fb1_lcd; saveenv; boot
 
run load_scr; source; setenv display $disp_fb0_lvds1 $disp_fb1_lcd; saveenv; boot
 
</pre>
 
</pre>
* LVDS0 + HDMI 双屏异步显示
+
* LVDS0 + HDMI Dual screen asynchronous display
 
<pre>
 
<pre>
 
run load_scr; source; setenv display $disp_fb0_lvds0 $disp_fb1_hdmi; saveenv; boot
 
run load_scr; source; setenv display $disp_fb0_lvds0 $disp_fb1_hdmi; saveenv; boot
 
</pre>
 
</pre>
* LVDS0 + LCD(RGB) 双屏异步显示
+
* LVDS0 + LCD(RGB) Dual screen asynchronous display
 
<pre>
 
<pre>
 
run load_scr; source; setenv display $disp_fb0_lvds0 $disp_fb1_lcd; saveenv; boot
 
run load_scr; source; setenv display $disp_fb0_lvds0 $disp_fb1_lcd; saveenv; boot
 
</pre>
 
</pre>
* HDMI + LVDS1 双屏异步显示
+
* HDMI + LVDS1 Dual screen asynchronous display
 
<pre>
 
<pre>
 
run load_scr; source; setenv display $disp_fb0_hdmi $disp_fb1_lvds1; saveenv; boot
 
run load_scr; source; setenv display $disp_fb0_hdmi $disp_fb1_lvds1; saveenv; boot
 
</pre>
 
</pre>
* HDMI + LVDS0 双屏异步显示
+
* HDMI + LVDS0 Dual screen asynchronous display
 
<pre>
 
<pre>
 
run load_scr; source; setenv display $disp_fb0_hdmi $disp_fb1_lvds0; saveenv; boot
 
run load_scr; source; setenv display $disp_fb0_hdmi $disp_fb1_lvds0; saveenv; boot
 
</pre>
 
</pre>
* LCD(RGB) + LVDS1 双屏异步显示
+
* LCD(RGB) + LVDS1 Dual screen asynchronous display
 
<pre>
 
<pre>
 
run load_scr; source; setenv display $disp_fb0_lcd $disp_fb1_lvds1; saveenv; boot
 
run load_scr; source; setenv display $disp_fb0_lcd $disp_fb1_lvds1; saveenv; boot
 
</pre>
 
</pre>
* LCD(RGB) + LVDS0 双屏异步显示
+
* LCD(RGB) + LVDS0 Dual screen asynchronous display
 
<pre>
 
<pre>
 
run load_scr; source; setenv display $disp_fb0_lcd $disp_fb1_lvds0; saveenv; boot
 
run load_scr; source; setenv display $disp_fb0_lcd $disp_fb1_lvds0; saveenv; boot
第781行: 第781行:
 
<br>
 
<br>
  
## **第四部分 扩展模块功能演示**
+
## **Part IV  Expansion Module Function Demo**
  
### RTL8188 模块功能演示(WIFI Client)
+
### RTL8188 Module function demonstration(WIFI Client)  
  【测试说明】:使用RTL8188作为无线网卡连接到WIFI AP。 
+
  【Test instruction】:Connect to the WIFI AP using the RTL8188 as a wireless network card. 
  【接口标识】:WIFI、WIFI_ANT  
+
  【Interface identifier】:WIFI、WIFI_ANT  
  【系统设备】:wlan0  
+
  【System equipment】:wlan0  
**测试操作**   
+
**Test operation**   
  1. 确定“WIFI”标识处有贴上WIFI模块,否则无需进行测试。 
+
  1. Make sure that the WIFI module is attached to the “WIFI” logo, otherwise no testing is required.   
  2. 把WIFI天线连接到“WIFI_ANT”标识的接口上。 
+
  2. Connect the WIFI antenna to the interface labeled "WIFI_ANT".   
  3. 生成 SSID 的 WPA PSK 文件  
+
  3. Generate WPA PSK file for SSID  
  _命令格式: wpa_passphrase <ssid> [passphrase]_   
+
  _Command format: wpa_passphrase <ssid> [passphrase]_   
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
wpa_passphrase MY-TEST-AP myzr2012 > /etc/wpa_supplicant.conf
 
wpa_passphrase MY-TEST-AP myzr2012 > /etc/wpa_supplicant.conf
 
pkill wpa_supplicant
 
pkill wpa_supplicant
 
</pre>
 
</pre>
  4. 连接 
+
  4. connection 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
wpa_supplicant -B -i wlan0 -c /etc/wpa_supplicant.conf
 
wpa_supplicant -B -i wlan0 -c /etc/wpa_supplicant.conf
  
=====> 输出信息:
+
=====> Output information: 
 
Successfully initialized wpa_supplicant
 
Successfully initialized wpa_supplicant
 
rfkill: Cannot open RFKILL control device
 
rfkill: Cannot open RFKILL control device
第809行: 第809行:
 
......
 
......
 
</pre>
 
</pre>
  5. 获取 IP
+
  5. Get IP
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
udhcpc -i wlan0
 
udhcpc -i wlan0
  
=====> 输出信息:
+
=====> Output information: 
 
udhcpc (v1.23.1) started
 
udhcpc (v1.23.1) started
 
Sending discover...
 
Sending discover...
第821行: 第821行:
 
/etc/udhcpc.d/50default: Adding DNS 192.168.43.1
 
/etc/udhcpc.d/50default: Adding DNS 192.168.43.1
 
</pre>
 
</pre>
  6. 测试连接
+
  6. Test connection 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
ping -I wlan0 192.168.43.1 -c 2 -w 4
 
ping -I wlan0 192.168.43.1 -c 2 -w 4
  
=====> 输出信息:
+
=====> Output information: 
 
PING 192.168.43.1 (192.168.43.1) from 192.168.43.130 wlan0: 56(84) bytes of data.
 
PING 192.168.43.1 (192.168.43.1) from 192.168.43.130 wlan0: 56(84) bytes of data.
 
64 bytes from 192.168.43.1: icmp_seq=1 ttl=64 time=5.66 ms
 
64 bytes from 192.168.43.1: icmp_seq=1 ttl=64 time=5.66 ms
第835行: 第835行:
 
rtt min/avg/max/mdev = 5.663/7.444/9.226/1.783 ms
 
rtt min/avg/max/mdev = 5.663/7.444/9.226/1.783 ms
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  “0% packet loss”表示WIFI连接正常。 
+
  “0% packet loss” means WIFI connection is normal.
 
<br>
 
<br>
  
### RTL8188 模块功能演示(WIFI AP mode)
+
### RTL8188 Module function demonstration(WIFI AP mode)
  【测试说明】:使用RTL8188作为WIFI AP,并把手机连接到此AP。 
+
  【Test instruction】:Use RTL8188 as the WIFI AP and connect your phone to this AP. 
  【接口标识】:WIFI、WIFI_ANT  
+
  【Interface identifier】:WIFI、WIFI_ANT  
  【系统设备】:wlan0  
+
  【System equipment】:wlan0  
**测试操作**   
+
**Test operation**   
  1. 确定“WIFI”标识处有贴上WIFI模块,否则无需进行测试。 
+
  1. Make sure that the WIFI module is attached to the “WIFI” logo, otherwise no testing is required.   
  2. 把WIFI天线连接到“WIFI_ANT”标识的接口上。 
+
  2. Connect the WIFI antenna to the interface labeled "WIFI_ANT".   
  3. wlan0 配置 IP:
+
  3. Configure IP for wlan0
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:  
 
ifconfig wlan0 192.168.99.1
 
ifconfig wlan0 192.168.99.1
  
=====> 输出信息:
+
=====> Output information:
 
==> rtl8188e_iol_efuse_patch
 
==> rtl8188e_iol_efuse_patch
 
IPv6: ADDRCONF(NETDEV_UP): wlan0: link is not ready
 
IPv6: ADDRCONF(NETDEV_UP): wlan0: link is not ready
 
</pre>
 
</pre>
  4. wlan0 启用 DHCP 服务:
+
  4. Enable the DHCP service for wlan0
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:  
 
touch /var/lib/misc/udhcpd.leases
 
touch /var/lib/misc/udhcpd.leases
 
udhcpd -f /etc/my_udhcpd.conf &
 
udhcpd -f /etc/my_udhcpd.conf &
  
=====> 输出信息:
+
=====> Output information:
 
[1] 469
 
[1] 469
 
udhcpd (v1.23.1) started
 
udhcpd (v1.23.1) started
 
</pre>
 
</pre>
  5. 为 wlan0 启用 Host-AP 功能
+
  5. Enable Host-AP feature for wlan0 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:  
 
hostapd /etc/my_hostapd.conf -B
 
hostapd /etc/my_hostapd.conf -B
  
=====> 输出信息:
+
=====> Output information:
 
Configuration file: /etc/my_hostapd.conf
 
Configuration file: /etc/my_hostapd.conf
 
rfkill: Cannot open RFKILL control device
 
rfkill: Cannot open RFKILL control device
第878行: 第878行:
 
wlan0: AP-ENABLED
 
wlan0: AP-ENABLED
 
</pre>
 
</pre>
  5. 客户端设备连接到 Host-AP   
+
  5. Client device connected to Host-AP   
  至此,开发板的 Host-AP 功能已启用,客户端设备可搜索“MY_HOSTAP_V25”,通过密码“myzr2012”连接到此AP。 
+
  At this point, the development board's Host-AP function is enabled, the client device can search for "MY_HOSTAP_V25" and connect to this AP with the password "myzr2012".   
**测试结果**
+
**Test Results**  
  1. 设备连接成功时产生的信息
+
  1. Information generated when the device is successfully connected 
 
<pre>
 
<pre>
=====> 输出信息:
+
=====> Output information: 
 
Sending OFFER of 192.168.12.20
 
Sending OFFER of 192.168.12.20
 
Sending OFFER of 192.168.12.20
 
Sending OFFER of 192.168.12.20
 
Sending ACK to 192.168.12.20
 
Sending ACK to 192.168.12.20
 
</pre>
 
</pre>
  2. 设备断开连接时产生的信息
+
  2. Information generated when a device is disconnected 
 
<pre>
 
<pre>
=====> 输出信息:
+
=====> Output information: 
 
RTL871X: OnDeAuth(wlan0) reason=3, ta=b4:0b:44:f5:64:2f
 
RTL871X: OnDeAuth(wlan0) reason=3, ta=b4:0b:44:f5:64:2f
 
RTL871X: clear key for addr:b4:0b:44:f5:64:2f, camid:4
 
RTL871X: clear key for addr:b4:0b:44:f5:64:2f, camid:4
第896行: 第896行:
 
<br>
 
<br>
  
### EC20 模块测试
+
### EC20 Module test 
  【测试说明】:4G连接成功后,开发板向外网发送ICMP报文来验证连接正常。 
+
  【Test instruction】:After the 4G connection is successful, the development board sends an ICMP packet to the external network to verify that the connection is normal. 
  【接口标识】:MINI_PCIE  
+
  【Interface identifier】:MINI_PCIE  
  【系统设备】:eth2  
+
  【System equipment】:eth2  
**测试操作**   
+
**Test operation**   
  1. 开发板断电,接上4G模块,接上天线并插入SIM卡后启动评估板。    
+
  1. The development board is powered off, connected to the 4G module, connected to the antenna and inserted into the SIM card to start the evaluation board.    
  2. 使用指令进行网络连接:
+
  2. Use the instructions to make a network connection: 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:  
 
/my-demo/gcc-linaro-5.3-arm/quectel-CM &
 
/my-demo/gcc-linaro-5.3-arm/quectel-CM &
  
=====> 输出信息:
+
=====> Output information: 
 
[1] 540
 
[1] 540
 
[12-18_03:17:06:719] WCDMA&LTE_QConnectManager_Linux&Android_V1.1.34
 
[12-18_03:17:06:719] WCDMA&LTE_QConnectManager_Linux&Android_V1.1.34
第938行: 第938行:
 
[12-18_03:17:07:888] /etc/udhcpc.d/50default: Adding DNS 211.136.20.203
 
[12-18_03:17:07:888] /etc/udhcpc.d/50default: Adding DNS 211.136.20.203
 
</pre>
 
</pre>
  3. 测试连接
+
  3. Test connection 
 
<pre>
 
<pre>
=====> 输入指令:
+
=====> Enter the command:
 
ping -I eth2 www.baidu.com -c 2 -w 4
 
ping -I eth2 www.baidu.com -c 2 -w 4
  
=====> 输出信息:
+
=====> Output information:
 
PING www.baidu.com (14.215.177.38): 56 data bytes
 
PING www.baidu.com (14.215.177.38): 56 data bytes
 
64 bytes from 14.215.177.38: seq=0 ttl=49 time=15.753 ms
 
64 bytes from 14.215.177.38: seq=0 ttl=49 time=15.753 ms
第952行: 第952行:
 
round-trip min/avg/max = 11.835/13.794/15.753 ms
 
round-trip min/avg/max = 11.835/13.794/15.753 ms
 
</pre>
 
</pre>
**测试结果**   
+
**Test Results**   
  “0% packet loss”表示WIFI连接正常。 
+
  “0% packet loss” Indicates that the WIFI connection is normal.   
 
<br>
 
<br>
  
第959行: 第959行:
 
<pre>
 
<pre>
 
--------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------
* 珠海明远智睿科技有限公司 
 
 
* ZhuHai MYZR Technology CO.,LTD.
 
* ZhuHai MYZR Technology CO.,LTD.
 
* Latest Update: 2019/02/19   
 
* Latest Update: 2019/02/19   

2019年3月4日 (一) 09:31的版本

Part I :Testing Instructions

Test Environment

  【Development board model】:MY-IMX6-EK314-6Q-1G
  【Kernel version】:Linux-4.1.15
  【File system】:L4115-fsl-image-qt5-myimx6a9.tar.bz2
  【Tool version】:MfgTool-MYIMX6A9-L4.1.15-Patch.svn297.rar
  Note:In order to ensure the test is correct, the recommended version of the burning tool should be no less than svn298

Interface identification map

My-imx6ek314 front.jpg
My-imx6ek314 back.jpg

Part II Interface Testing

Network port test

  【Test instruction】:Test the way that the development board sends ICMP packets to the PC.
  【Interface identifier】:10M/100M Ethernet-1
  【System interface】:eth0
Test operation
  Configure the computer wired network card IP to 192.168.137.99.
  Connect the network port of the development board with the network cable and the computer network port.
  Configure the development board network port:

  
=====>Enter the command:
ifconfig eth1 down 
ifconfig eth0 192.168.137.81  

  Test network port:

  
=====> Enter the command:    
ping 192.168.137.99 -c 2 -w 4 

=====> Output information:  
PING 192.168.137.99 (192.168.137.99) 56(84) bytes of data.  
64 bytes from 192.168.137.99: icmp_seq=1 ttl=128 time=0.570 ms  
64 bytes from 192.168.137.99: icmp_seq=2 ttl=128 time=0.365 ms  

--- 192.168.137.99 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.365/0.467/0.570/0.104 ms

Test Results
  “0% packet loss”means the test passed.

Network port two test

  【Test instruction】:Test the way that the development board sends ICMP packets to the PC.
  【Interface identifier】:10M/100M Ethernet-2
  【System interface】:eth1
Test operation
  Configure the computer wired network card IP to 192.168.137.99.
  Connect the network port of the development board with the network cable and the computer network port.
  Configure the development board network port:

=====> Enter the command:
ifconfig eth0 down
ifconfig eth1 192.168.137.82 

  Test network port:

=====> Enter the command:  
ping 192.168.137.99 -c 2 -w 4 

=====> Output information: 
PING 192.168.137.99 (192.168.137.99) 56(84) bytes of data.
64 bytes from 192.168.137.99: icmp_seq=1 ttl=128 time=1.38 ms
64 bytes from 192.168.137.99: icmp_seq=2 ttl=128 time=0.627 ms

--- 192.168.137.99 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.627/1.003/1.380/0.377 ms

Test Results
  “0% packet loss”means the test passed.

USB interface test

  【Test instruction】:Test by plugging and unplugging a USB storage device (U disk)
  【Interface identifier】:USB HOST
  【System interface】:/sys/bus/usb/
Test Methods
  Insert the USB device into the backplane USB interface and the system will output a message similar to the following:

usb 1-1.2: new high-speed USB device number 5 using ci_hdrc
usb-storage 1-1.2:1.0: USB Mass Storage device detected
scsi host1: usb-storage 1-1.2:1.0
scsi 1:0:0:0: Direct-Access     Mass     Storage Device   1.00 PQ: 0 ANSI: 0 CCS
sd 1:0:0:0: Attached scsi generic sg0 type 0
sd 1:0:0:0: [sda] 60776448 512-byte logical blocks: (31.1 GB/28.9 GiB)
sd 1:0:0:0: [sda] Write Protect is off
sd 1:0:0:0: [sda] No Caching mode page found
sd 1:0:0:0: [sda] Assuming drive cache: write through
 sda: sda1
sd 1:0:0:0: [sda] Attached SCSI removable disk

  Pull the USB device out of the backplane and the system will output a message similar to the following:

usb 1-1.2: USB disconnect, device number 5

Test Results
  When the USB storage device is plugged and unplugged, the system outputs the above information to indicate normal.

SD interface test

  【Test instruction】:Test by inserting and identifying a TF card
  【Interface identifier】:SD3
  【System interface】:/sys/bus/mmc/
Test Methods
  Insert the SD card into this interface:

=====> Output information:
mmc2: new high speed SDHC card at address 1234
mmcblk2: mmc2:1234 SA32G 28.9 GiB 
 mmcblk2: p1

  Pop up the SD card:

=====> Output information:  
mmc2: card 1234 removed  

Test Results
  When the SD storage device is plugged and unplugged, the system outputs the above information to indicate normal.

Standard GPIO test

  【Test instruction】:Control the output level of the GPIO
  【Interface identifier】:GPIO
  【System interface】:/sys/class/gpio/
IO available for MY-IMX6-EK314

U14:3(193), U14:5(177), U14:7(176), U14:9(35), U14:11(169), U14:13(34), U14:15(36), U14:17(29)
U14:4(192), U14:6(178), U14:8(39), U14:10(38), U14:12(171), U14:14(32), U14:16(37), U14:18(27)
U14:19(30), U14:21(24), U14:23(10), U14:25(12), U14:27(11), U14:29(85), U14:35(20), U14:37(116)
U14:20(26), U14:22(GND), U14:24(15), U14:26(13), U14:28(14), U14:30(86), U14:36(NC), U14:38(NC)

GPIO output low level test
  Configure U14:29 to output low level operation method:

=====> Enter the command:
OUT_IO_OUT_NUM=85
echo ${OUT_IO_OUT_NUM} > /sys/class/gpio/export    
echo "out" > /sys/class/gpio/gpio${OUT_IO_OUT_NUM}/direction  
echo 0 > /sys/class/gpio/gpio${OUT_IO_OUT_NUM}/value 

  Test the pin U14:29 with a multimeter, the voltage is 0V, it means OK
GPIO output high level test
  Configure U14:30 to output high level operation method:

=====> Enter the command:
OUT_IO_OUT_NUM=86 
echo ${OUT_IO_OUT_NUM} > /sys/class/gpio/export
echo "out" > /sys/class/gpio/gpio${OUT_IO_OUT_NUM}/direction  
echo 1 > /sys/class/gpio/gpio${OUT_IO_OUT_NUM}/value

  Test the pin U14:30 with a multimeter, the voltage is 3.3V, it means OK
Other
  Instructions to control GPIO output low level:

=====> Enter the command:  
echo 0 > /sys/class/gpio/gpio${OUT_IO_OUT_NUM}/value   

  Instructions to control GPIO output high level:

=====> Enter the command:  
echo 1 > /sys/class/gpio/gpio${OUT_IO_OUT_NUM}/value 


GPIO-LED Test(leds-heartbeat)

  【Test instruction】:Observe the leds of leds-heartbeat
  【Interface identifier】:GPIO-LED
  【System interface】:/sys/class/leds/leds-heartbeat/
Test operation
  No need for any operation.
Test Results
  After the system is started, you can see that D15 is flashing regularly, which means it should function normally.

GPIO-LED Test(leds-mmc3)

  【Test instruction】:Write data to eMMC while observing LEDs of leds-mmc3
  【Interface identifier】:GPIO-LED
  【System interface】:/sys/class/leds/leds-mmc3/
Test operation

=====>  Enter the command:  
dd if=/dev/zero of=/home/root/test bs=1024k count=128

Test Results
  You can see that when you write data to eMMC, D16 is bright.

GPIO-LED Test(leds-timer)

  【Test instruction】:Observe led-time LEDs
  【Test instruction】:Control the lighting time of led-time(LED)
  【Interface identifier】:GPIO-LED
  【System interface】:/sys/class/leds/leds-timer/
Test operation
  Change the time of led-time(D17) extinction

=====>  Enter the command:  
echo 1000 > /sys/class/leds/leds-timer/delay_off  

  Change the time that led-timer (D17) is on

=====>  Enter the command:  
echo 2000 > /sys/class/leds/leds-timer/delay_on  

Test Results
  After executing the instruction, it is observed that the proportion of time for the corresponding LED to be on and off is basically 2:1.

GPIO-LED Test(leds-gpio)

  【Test instruction】:Control the on and off time of ledss-gpio (LED)
  【Interface identifier】:LED
  【System interface】:/sys/class/leds/leds-gpio/
Test operation
  Make the light (D18) off:

=====> Enter the command:  
echo 0 > /sys/class/leds/leds-gpio/brightness  

  Turn the light(D18) on:

=====>  Enter the command:  
echo 1 > /sys/class/leds/leds-gpio/brightness  

Test Results
  After executing the instruction, it is found that the state of the corresponding LED changes with the function of the instruction.

GPIO-KEY test

  【Test instruction】:Use evtest for testing
  【Interface identifier】:KEY3, KEY2, KEY1
  【System interface】:/dev/input/eventX
Test operation
  Run evtest to prepare for testing

=====> Enter the command:  
evtest 

=====> Output information:  
No device specified, trying to scan all of /dev/input/event*
Available devices:
/dev/input/event0:  WM8962 Beep Generator
/dev/input/event1:  gpio-keys.20
Select the device event number [0-1]:

  Select the serial number corresponding to gpio-keys

=====> Enter the command:  
1

=====>Output information:  
Input driver version is 1.0.1
Input device ID: bus 0x19 vendor 0x1 product 0x1 version 0x100
Input device name: "gpio-keys"
Supported events:
  Event type 0 (EV_SYN)
  Event type 1 (EV_KEY)
    Event code 114 (KEY_VOLUMEDOWN)
    Event code 115 (KEY_VOLUMEUP)
    Event code 116 (KEY_POWER)
Properties:
Testing ... (interrupt to exit)

  Press the button on the development board

Event: time 1537921332.815219, type 1 (EV_KEY), code 114 (KEY_VOLUMEDOWN), value 1
Event: time 1537921332.815219, -------------- SYN_REPORT ------------
Event: time 1537921332.985211, type 1 (EV_KEY), code 114 (KEY_VOLUMEDOWN), value 0
Event: time 1537921332.985211, -------------- SYN_REPORT ------------
Event: time 1537921335.355204, type 1 (EV_KEY), code 115 (KEY_VOLUMEUP), value 1
Event: time 1537921335.355204, -------------- SYN_REPORT ------------
Event: time 1537921335.535203, type 1 (EV_KEY), code 115 (KEY_VOLUMEUP), value 0
Event: time 1537921335.535203, -------------- SYN_REPORT ------------
Event: time 1537921337.375207, type 1 (EV_KEY), code 116 (KEY_POWER), value 1
Event: time 1537921337.375207, -------------- SYN_REPORT ------------
Event: time 1537921337.535204, type 1 (EV_KEY), code 116 (KEY_POWER), value 0
Event: time 1537921337.535204, -------------- SYN_REPORT ------------

Test Results
  When a button is pressed, evtest will output the corresponding information.

Serial test(UART2)

  【Test instruction】:Test by serial port self-receiving
  【Interface identifier】:TTL_UART
  【System equipment】:/dev/ttymxc1
Test operation
  Short the serial port 2 transmit and receive pin (J12 pins 9 and 10)
  Execute test instructions:

=====> Enter the command:  
/my-demo/gcc-linaro-5.3-arm/serial_test.out /dev/ttymxc1 "www.myzr.com.cn"  

=====> Output information:  
Starting send data...finish
Starting receive data:
ASCII: 0x77      Character: w 
ASCII: 0x77      Character: w 
ASCII: 0x77      Character: w 
ASCII: 0x2e      Character: . 
ASCII: 0x6d      Character: m 
ASCII: 0x79      Character: y 
ASCII: 0x7a      Character: z 
ASCII: 0x72      Character: r 
ASCII: 0x2e      Character: . 
ASCII: 0x63      Character: c 
ASCII: 0x6f      Character: o 
ASCII: 0x6d      Character: m 
ASCII: 0x2e      Character: . 
ASCII: 0x63      Character: c 
ASCII: 0x6e      Character: n 
ASCII: 0x0       Character:   

Test Results
  After executing the test command, the application output is similar to the above information.

Serial test(UART3)

  【Test instruction】:Test by serial port self-receiving
  【Interface identifier】:TTL_UART
  【System equipment】:/dev/ttymxc2
Test operation
  Short-circuit the transmit and receive pins of serial port 3 (pins 12 and 13 of J12).
  Execute test instructions:

=====>  Enter the command:  
/my-demo/gcc-linaro-5.3-arm/serial_test.out /dev/ttymxc2 "www.myzr.com.cn"  

=====> Output information:  
Starting send data...finish
Starting receive data:
ASCII: 0x77      Character: w 
ASCII: 0x77      Character: w 
ASCII: 0x77      Character: w 
ASCII: 0x2e      Character: . 
ASCII: 0x6d      Character: m 
ASCII: 0x79      Character: y 
ASCII: 0x7a      Character: z 
ASCII: 0x72      Character: r 
ASCII: 0x2e      Character: . 
ASCII: 0x63      Character: c 
ASCII: 0x6f      Character: o 
ASCII: 0x6d      Character: m 
ASCII: 0x2e      Character: . 
ASCII: 0x63      Character: c 
ASCII: 0x6e      Character: n 
ASCII: 0x0       Character:   

Test Results
  After executing the test instruction, the application output similar information as above is normal.

Serial test(UART4)

  【Test instruction】:Test by serial port self-receiving
  【Interface identifier】:TTL_UART
  【System equipment】:/dev/ttymxc3
Test operation
  Short-circuit the transmit and receive pins of serial port 4 (pins 15 and 17 of J12)

   Execute test instructions:
=====>  Enter the command:
/my-demo/gcc-linaro-5.3-arm/serial_test.out /dev/ttymxc3 "www.myzr.com.cn"  

=====>  Output information:  
Starting send data...finish
Starting receive data:
ASCII: 0x77      Character: w 
ASCII: 0x77      Character: w 
ASCII: 0x77      Character: w 
ASCII: 0x2e      Character: . 
ASCII: 0x6d      Character: m 
ASCII: 0x79      Character: y 
ASCII: 0x7a      Character: z 
ASCII: 0x72      Character: r 
ASCII: 0x2e      Character: . 
ASCII: 0x63      Character: c 
ASCII: 0x6f      Character: o 
ASCII: 0x6d      Character: m 
ASCII: 0x2e      Character: . 
ASCII: 0x63      Character: c 
ASCII: 0x6e      Character: n 
ASCII: 0x0       Character:   

Test Results
  After executing the test instruction, the application output similar information as above is normal.

Serial test(UART5)

  【Test instruction】:The serial port self - collecting method was used to test
  【Interface identifier】:TTL_UART
  【System equipment】:/dev/ttymxc4
Test operation
  Short-circuit the transmit and receive pins of serial port 5 (pins 16 and 18 of J12)
  Execute test instructions:

=====> Enter the command:  
/my-demo/gcc-linaro-5.3-arm/serial_test.out /dev/ttymxc4 "www.myzr.com.cn"  

=====> Output information:  
Starting send data...finish
Starting receive data:
ASCII: 0x77      Character: w 
ASCII: 0x77      Character: w 
ASCII: 0x77      Character: w 
ASCII: 0x2e      Character: . 
ASCII: 0x6d      Character: m 
ASCII: 0x79      Character: y 
ASCII: 0x7a      Character: z 
ASCII: 0x72      Character: r 
ASCII: 0x2e      Character: . 
ASCII: 0x63      Character: c 
ASCII: 0x6f      Character: o 
ASCII: 0x6d      Character: m 
ASCII: 0x2e      Character: . 
ASCII: 0x63      Character: c 
ASCII: 0x6e      Character: n 
ASCII: 0x0       Character:   

Test Results
  After executing the test instruction, the application output similar information as above is normal.

CAN test

  【Test instruction】:CAN1 sending and CAN0 receiving are adopted.
  【Interface identifier】:CAN1,CAN2
  【System interface】:can0,can1
Test preparation
  Connect CAN_L of CAN1 to CAN_L of CAN2.
  Connect CAN_H of CAN1 to CAN_H of CAN2.
Test command
  Configure CAN1(can0):

=====> Enter the command:
ip link set can0 up type can bitrate 125000

  Configure CAN2(can1):

=====>  Enter the command:  
ip link set can1 up type can bitrate 125000

  CAN1 (can0) background reception :

=====> Enter the command:
candump can0 &  

  CAN2(can1)send data:

=====> Enter the command:  
cansend can1 1F334455#1122334455667788 

=====> Output information:  
can0  1F334455   [8]  11 22 33 44 55 66 77 88

Test Results
  After CAN2 (can1) transmits data, CAN1 (can0) will output the received data, such as: 11 22 33 44 55 66 77 88

SPI test(ECSPI1)

  【Test instruction】:Tested by spontaneous self-receiving.
  【Interface identifier】:SPI
  【System equipment】:/dev/spidev0.1
Test operation
  Short the 6 and 12 pins of J7.
  Execute test instruction

=====> Enter the command:  
/my-demo/gcc-linaro-5.3-arm/spidev_test.out -D /dev/spidev0.1   

=====> Output information: 
spi mode: 0
bits per word: 8
max speed: 500000 Hz (500 KHz)

FF FF FF FF FF FF   
40 00 00 00 00 95   
FF FF FF FF FF FF   
FF FF FF FF FF FF   
FF FF FF FF FF FF   
DE AD BE EF BA AD   
F0 0D 

Test Results
  After executing the test instruction, the application output similar information as above is normal.

SPI test(ECSPI2)

  【Test instruction】:Tested by spontaneous self-receiving.
  【Interface identifier】:SPI
  【System equipment】:/dev/spidev1.0
Test operation
  Short the 7 and 11 pins of the J13.   Execute test instructions

=====> Enter the command:  
/my-demo/gcc-linaro-5.3-arm/spidev_test.out -D /dev/spidev1.0   

=====> Output information:  
spi mode: 0
bits per word: 8
max speed: 500000 Hz (500 KHz)

FF FF FF FF FF FF   
40 00 00 00 00 95   
FF FF FF FF FF FF   
FF FF FF FF FF FF   
FF FF FF FF FF FF   
DE AD BE EF BA AD   
F0 0D

Test Results
  After Execute test instructions, the application output is similar to the above information.

Watchdog Timeout reset test

  【Test instruction】:Turn on the watchdog and wait for the watchdog to time out, generating a reset.
  【Interface identifier】:None
  【System equipment】:/dev/watchdog
Test operation
  Run the watchdog program:

=====> Enter the command: 
/unit_tests/wdt_driver_test.out 10 15 1  
  
=====> Output information:
Starting wdt_driver (timeout: 10, sleep: 15, test: write)
Trying to set timeout value=10 seconds
The actual timeout was set to 10 seconds
Now reading back -- The timeout is 10 seconds

Test Results
  After running the test command for 10 seconds, WatchDog times out and the system is reset. The information that will see the system restart output at the terminal is similar to the following:

U-Boot 2016.03-svn351 (Jan 25 2019 - 10:13:51 +0800)

CPU:   Freescale i.MX6Q rev1.5 996 MHz (running at 792 MHz)
CPU:   Extended Commercial temperature grade (-20C to 105C) at 48C
Reset cause: WDOG
Board: MYZR i.MX6 Evaluation Kit
Model: MY-IMX6-EK314-6Q-1G


Watchdog Feeding dog test

  【Test instruction】:Turn on the watchdog and feed the app to the dog.
  【Interface identifier】:None
  【System equipment】:/dev/watchdog
Test operation
  Run the watchdog program and set the timeout to 4 seconds and the dog interval to 2 seconds:

=====> Enter the command:
/unit_tests/wdt_driver_test.out 4 2 1 &  
  
=====> Output information:
[1] 1026
Starting wdt_driver (timeout: 4, sleep: 2, test: write)
Trying to set timeout value=4 seconds
The actual timeout was set to 4 seconds
Now reading back -- The timeout is 4 seconds


RTC test

  【Test instruction】:Read and set the time, check the time is correct after power off and restart
  【Interface identifier】:None
  【System equipment】:/sys/class/rtc/rtc0/
Test operation
  1.Power off and restart the device to check the current system time and hardware time:

=====> Enter the command:  
date

=====> Output information: 
Tue Sep 25 22:47:03 UTC 2018

  2. View the current RTC chip clock:

=====> Enter the command: 
hwclock 

=====> Output information:  
Tue Sep 25 22:47:18 2018  0.000000 seconds

  3. Set the system clock and sync to the RTC chip

=====>  Enter the command: 
date -s "2019-01-14 12:34:56"  

=====> Output information: 
Mon Jan 14 12:34:56 UTC 2019

  4. Write the system clock to the hardware clock

=====>  Enter the command:
hwclock -w  

Test Results
  1. Power off the evaluation board to view the current system clock and hardware clock

=====>  Enter the command:  
date

=====> Output information: 
Mon Jan 14 12:36:22 UTC 2019

  2. View the current RTC chip clock

=====> Enter the command:  
hwclock  

=====> Output information:  
Mon Jan 14 12:36:40 2019  0.000000 seconds

  It can be seen that the time we get is basically the same as the time set.

WakeAlarm Wake up test

  【Test instruction】:Set the wakealarm event, then put the system to sleep and wait for the wakealarm event to wake up.
  【Interface identifier】:None
  【System equipment】:Such as /sys/class/rtc/rtc1/wakealarm
Test operation
  1. Set rtc1 to generate a wakealarm event after 10 seconds

=====> Enter the command:
echo +10 > /sys/class/rtc/rtc1/wakealarm 

  2.Put the device to sleep

=====> Enter the command:
echo mem > /sys/power/state

=====> Output information:  
PM: Syncing filesystems ... done.
Freezing user space processes ... (elapsed 0.001 seconds) done.  
Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.  
Suspending console(s) (use no_console_suspend to debug)  

Test Results
  1. You can see that the LEDs of the development board except the power indicator are off.
  2. The state of the LED is restored again within 10 seconds, and the system outputs something like the following:

PM: suspend of devices complete after 90.667 msecs
PM: suspend devices took 0.090 seconds
PM: late suspend of devices complete after 1.286 msecs
PM: noirq suspend of devices complete after 1.272 msecs
Disabling non-boot CPUs ...
CPU1: shutdown
CPU2: shutdown
CPU3: shutdown
Enabling non-boot CPUs ...
CPU1 is up
CPU2 is up
CPU3 is up
PM: noirq resume of devices complete after 1.140 msecs
PM: early resume of devices complete after 1.114 msecs
PM: resume of devices complete after 760.379 msecs
PM: resume devices took 0.760 seconds
Restarting tasks ... done.


Audio playback test

  【Test instruction】:Verify the audio playback of the EV kit by playing an audio file.
  【Interface identifier】:EAR
  【System equipment】:wm8960-audio
Test operation
  Plug the headset into the "EAR" port of the board.
  Execute the test command:

=====> Enter the command: 
aplay /unit_tests/audio8k16S.wav   

=====> Output information:  
Playing WAVE '/unit_tests/audio8k16S.wav' : Signed 16 bit Little Endian, Rate 8000 Hz, Stereo

Test Results
  After the above test command is executed, the sound output from the audio device will be heard.

Audio recording test

  【Test instruction】:Verify the audio recording function of the EV kit by recording and playing the recording file.
  【Interface identifier】:MIC
  【System equipment】:wm8960-audio
Test operation
  1. Plug the headset with the MIC into the “MIC” port of the development board.
  2. Execute the recording command:

=====> Enter the command:  
arecord -d 5 -f S16_LE -t wav foobar.wav

=====> Output information:  
Recording WAVE 'foobar.wav' : Signed 16 bit Little Endian, Rate 8000 Hz, Mono

  3. Play recording

=====> Enter the command:
aplay foobar.wav

=====> Output information: 
Playing WAVE 'foobar.wav' : Signed 16 bit Little Endian, Rate 8000 Hz, Mono

Test Results
  The recorded recording will be heard after executing the above test command.

Part III Display function test

Operating instructions

  Each display function test needs to restart the system to enter the u-boot command line and execute the command under the u-boot command line.

Single screen display

  • LVDS1 display
    Note: The default is LVDS1 display, that is, LVDS1 is the display device when it is not intervened after power-on. Explicitly configure LVDS1 as the display method:
run load_scr; source; setenv display $disp_fb0_lvds1; saveenv; boot
  • LVDS0 display
run load_scr; source; setenv display $disp_fb0_lvds0; saveenv; boot
  • HDMI display
run load_scr; source; setenv display $disp_fb0_hdmi; saveenv; boot
  • LCD(RGB) display
run load_scr; source; setenv display $disp_fb0_lcd; saveenv; boot

Dual LVDS screen display

  • LVDS1 + LVDS0 Dual screen sync display
run load_scr; source; setenv display $disp_lvds_dul; saveenv; boot
  • LVDS1 + LVDS0(fb4) Dual screen asynchronous display
run load_scr; source; setenv display $disp_lvds_sep; saveenv; boot

Dual screen asynchronous display

  • LVDS1 + HDMI Dual screen asynchronous display
run load_scr; source; setenv display $disp_fb0_lvds1 $disp_fb1_hdmi; saveenv; boot
  • LVDS1 + LCD(RGB) Dual screen asynchronous display
run load_scr; source; setenv display $disp_fb0_lvds1 $disp_fb1_lcd; saveenv; boot
  • LVDS0 + HDMI Dual screen asynchronous display
run load_scr; source; setenv display $disp_fb0_lvds0 $disp_fb1_hdmi; saveenv; boot
  • LVDS0 + LCD(RGB) Dual screen asynchronous display
run load_scr; source; setenv display $disp_fb0_lvds0 $disp_fb1_lcd; saveenv; boot
  • HDMI + LVDS1 Dual screen asynchronous display
run load_scr; source; setenv display $disp_fb0_hdmi $disp_fb1_lvds1; saveenv; boot
  • HDMI + LVDS0 Dual screen asynchronous display
run load_scr; source; setenv display $disp_fb0_hdmi $disp_fb1_lvds0; saveenv; boot
  • LCD(RGB) + LVDS1 Dual screen asynchronous display
run load_scr; source; setenv display $disp_fb0_lcd $disp_fb1_lvds1; saveenv; boot
  • LCD(RGB) + LVDS0 Dual screen asynchronous display
run load_scr; source; setenv display $disp_fb0_lcd $disp_fb1_lvds0; saveenv; boot


Part IV Expansion Module Function Demo

RTL8188 Module function demonstration(WIFI Client)

  【Test instruction】:Connect to the WIFI AP using the RTL8188 as a wireless network card.
  【Interface identifier】:WIFI、WIFI_ANT
  【System equipment】:wlan0
Test operation
  1. Make sure that the WIFI module is attached to the “WIFI” logo, otherwise no testing is required.
  2. Connect the WIFI antenna to the interface labeled "WIFI_ANT".
  3. Generate WPA PSK file for SSID
  Command format: wpa_passphrase <ssid> [passphrase]

=====> Enter the command:
wpa_passphrase MY-TEST-AP myzr2012 > /etc/wpa_supplicant.conf
pkill wpa_supplicant

  4. connection

=====> Enter the command:  
wpa_supplicant -B -i wlan0 -c /etc/wpa_supplicant.conf

=====> Output information:  
Successfully initialized wpa_supplicant
rfkill: Cannot open RFKILL control device
==> rtl8188e_iol_efuse_patch 
IPv6: ADDRCONF(NETDEV_UP): wlan0: link is not ready
......

  5. Get IP

=====>  Enter the command:  
udhcpc -i wlan0

=====>  Output information:  
udhcpc (v1.23.1) started
Sending discover...
Sending select for 192.168.43.121...
Lease of 192.168.43.121 obtained, lease time 3600
/etc/udhcpc.d/50default: Adding DNS 192.168.43.1

  6. Test connection

=====>  Enter the command:  
ping -I wlan0 192.168.43.1 -c 2 -w 4

=====> Output information:  
PING 192.168.43.1 (192.168.43.1) from 192.168.43.130 wlan0: 56(84) bytes of data.
64 bytes from 192.168.43.1: icmp_seq=1 ttl=64 time=5.66 ms
64 bytes from 192.168.43.1: icmp_seq=2 ttl=64 time=9.22 ms

--- 192.168.43.1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1000ms
rtt min/avg/max/mdev = 5.663/7.444/9.226/1.783 ms

Test Results
  “0% packet loss” means WIFI connection is normal.

RTL8188 Module function demonstration(WIFI AP mode)

  【Test instruction】:Use RTL8188 as the WIFI AP and connect your phone to this AP.
  【Interface identifier】:WIFI、WIFI_ANT
  【System equipment】:wlan0
Test operation
  1. Make sure that the WIFI module is attached to the “WIFI” logo, otherwise no testing is required.
  2. Connect the WIFI antenna to the interface labeled "WIFI_ANT".
  3. Configure IP for wlan0:

=====> Enter the command: 
ifconfig wlan0 192.168.99.1

=====> Output information: 
==> rtl8188e_iol_efuse_patch
IPv6: ADDRCONF(NETDEV_UP): wlan0: link is not ready

  4. Enable the DHCP service for wlan0:

=====>  Enter the command: 
touch /var/lib/misc/udhcpd.leases
udhcpd -f /etc/my_udhcpd.conf &

=====> Output information: 
[1] 469
udhcpd (v1.23.1) started

  5. Enable Host-AP feature for wlan0

=====> Enter the command: 
hostapd /etc/my_hostapd.conf -B

=====> Output information:
Configuration file: /etc/my_hostapd.conf
rfkill: Cannot open RFKILL control device
Using interface wlan0 with hwaddr e0:b9:4d:7f:e4:40 and ssid "MY_HOSTAP_V25"
RTL871X: set group key camid:1, addr:00:00:00:00:00:00, kid:1, type:AES
wlan0: interface state UNINITIALIZED->ENABLED
wlan0: AP-ENABLED

  5. Client device connected to Host-AP
  At this point, the development board's Host-AP function is enabled, the client device can search for "MY_HOSTAP_V25" and connect to this AP with the password "myzr2012".
Test Results
  1. Information generated when the device is successfully connected

=====> Output information:  
Sending OFFER of 192.168.12.20
Sending OFFER of 192.168.12.20
Sending ACK to 192.168.12.20

  2. Information generated when a device is disconnected

=====> Output information:  
RTL871X: OnDeAuth(wlan0) reason=3, ta=b4:0b:44:f5:64:2f
RTL871X: clear key for addr:b4:0b:44:f5:64:2f, camid:4


EC20 Module test

  【Test instruction】:After the 4G connection is successful, the development board sends an ICMP packet to the external network to verify that the connection is normal.
  【Interface identifier】:MINI_PCIE
  【System equipment】:eth2
Test operation
  1. The development board is powered off, connected to the 4G module, connected to the antenna and inserted into the SIM card to start the evaluation board.
  2. Use the instructions to make a network connection:

=====> Enter the command: 
/my-demo/gcc-linaro-5.3-arm/quectel-CM &

=====> Output information:  
[1] 540
[12-18_03:17:06:719] WCDMA&LTE_QConnectManager_Linux&Android_V1.1.34
[12-18_03:17:06:720] /my-demo/gcc-linaro-5.3-arm/quectel-CM profile[1] = (null)/(null)/(null)/0, pincode = (null)
[12-18_03:17:06:723] Find /sys/bus/usb/devices/1-1.2 idVendor=2c7c idProduct=0125
[12-18_03:17:06:723] Find /sys/bus/usb/devices/1-1.2:1.4/net/eth2
[12-18_03:17:06:723] Find usbnet_adapter = eth2
[12-18_03:17:06:723] Find /sys/bus/usb/devices/1-1.2:1.4/GobiQMI/qcqmi2
[12-18_03:17:06:724] Find qmichannel = /dev/qcqmi2
[12-18_03:17:06:794] Get clientWDS = 7
[12-18_03:17:06:826] Get clientDMS = 8
[12-18_03:17:06:858] Get clientNAS = 9
[12-18_03:17:06:890] Get clientUIM = 10
[12-18_03:17:06:922] Get clientWDA = 11
[12-18_03:17:06:954] requestBaseBandVersion EC20CEFAR02A10M4G
[12-18_03:17:07:050] requestGetSIMStatus SIMStatus: SIM_READY
[12-18_03:17:07:082] requestGetProfile[1] cmnet///0
[12-18_03:17:07:114] requestRegistrationState2 MCC: 460, MNC: 0, PS: Attached, DataCap: LTE
[12-18_03:17:07:146] requestQueryDataCall IPv4ConnectionStatus: DISCONNECTED
[12-18_03:17:07:223] requestRegistrationState2 MCC: 460, MNC: 0, PS: Attached, DataCap: LTE
[12-18_03:17:07:274] requestSetupDataCall WdsConnectionIPv4Handle: 0x8777e7a0
[12-18_03:17:07:370] requestQueryDataCall IPv4ConnectionStatus: CONNECTED
[12-18_03:17:07:403] ifconfig eth2 up
[12-18_03:17:07:452] busybox udhcpc -f -n -q -t 5 -i eth2
[12-18_03:17:07:492] udhcpc (v1.23.1) started
[12-18_03:17:07:656] Sending discover...
[12-18_03:17:07:706] Sending select for 10.25.154.46...
[12-18_03:17:07:766] Lease of 10.25.154.46 obtained, lease time 7200
[12-18_03:17:07:888] /etc/udhcpc.d/50default: Adding DNS 211.136.17.107
[12-18_03:17:07:888] /etc/udhcpc.d/50default: Adding DNS 211.136.20.203

  3. Test connection

=====> Enter the command:
ping -I eth2 www.baidu.com -c 2 -w 4

=====> Output information: 
PING www.baidu.com (14.215.177.38): 56 data bytes
64 bytes from 14.215.177.38: seq=0 ttl=49 time=15.753 ms
64 bytes from 14.215.177.38: seq=1 ttl=49 time=11.835 ms

--- www.baidu.com ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 11.835/13.794/15.753 ms

Test Results
  “0% packet loss” Indicates that the WIFI connection is normal.


--------------------------------------------------------------------------------
* ZhuHai MYZR Technology CO.,LTD.
* Latest Update: 2019/02/19  
* Supporter: Tang Bin
--------------------------------------------------------------------------------